Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068209

RESUMO

Inhibitors for the prevention of corrosion in reinforced concrete are chemical substances able to reduce carbon steel reinforcements corrosion without altering the overall properties of concrete. Today, many commercially available substances have a negative impact on human safety during either the inhibitor synthesis, their handling or application in field. Green corrosion inhibitors are nontoxic, biodegradable and environmentally biocompatible substances. They are generally made of extracts from natural plants or waste, which are abundantly available in several countries. The majority of green inhibitor molecules usually contain multiple bonds, aromatic rings, polar functional groups and electronegative atoms as P, N, S or O; the latter are able to coordinate with metal cations to form protective layers on the metallic surface of the reinforcements, so as to inhibit the development (initiation and/or propagation) of the corrosion process. In this review, the most recent achievements on the study and investigation of green corrosion inhibitors for concrete structures are presented and discussed. Inhibitors are classified based on their nature and inhibition mechanism. The inhibition effectiveness of the substances is compared with the well-established effective nitrite-based inhibitor, distinguishing between accelerated and long-term tests. Based on the available data, a summary of corrosion inhibitors efficiency is reported.

2.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431491

RESUMO

Corrosion of reinforcement is a major problem regarding concrete durability. In new structures the corrosion onset can be delayed if additional protection methods are provided as is the case for the addition of corrosion inhibitors in the concrete mix. The main goal of this paper is the evaluation of the effect of the ascorbic acid (AA) as a green steel corrosion inhibitor in cement mortars contaminated by chlorides. Concentration levels of ascorbic acid, ranging from 0.5 to 10-3 mol/L, were added to the mixing water. Electrochemical methods, including corrosion potential (Ecorr), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS), were employed to assess the corrosion rate of the steel embedded in the mortars. The corrosion inhibiting performance of ascorbic acid was compared with that of sodium nitrite. The interaction of the ascorbic acid with the hydrated cement matrix was also evaluated with differential thermal and thermogravimetric analysis (DTA/TG) and pH measurements. The results indicated that, depending on the ascorbic acid concentration, it can be an activator of the corrosion process or an effective corrosion inhibitor in a similar manner to sodium nitrite. A corrosion rate decrease was achieved with concentrations below 10-2 mol/L and the optimum content was 10-3 mol/L. Within this concentration range, the AA does not modify the hydration performance of the cement matrix.

3.
Materials (Basel) ; 15(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454421

RESUMO

The topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments. It focuses on the design methodologies as well as the use of unconventional corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or traditional solutions for reinforced concrete protection and prevention against rebars corrosion such as corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the scientific literature highlights that there is no preferential way for the production of "green" concrete but that the sustainability of the building materials can only be achieved by implementing simultaneous multiple strategies aimed at reducing environmental impact and improving both durability and performances.

4.
Materials (Basel) ; 12(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174341

RESUMO

The aim of this work is the evaluation of the hydrogen effect on the J-integral parameter. It is well-known that the micro alloyed steels are affected by Hydrogen Embrittlement phenomena only when they are subjected at the same time to plastic deformation and hydrogen evolution at their surface. Previous works have pointed out the absence of Hydrogen Embrittlement effects on pipeline steels cathodically protected under static load conditions. On the contrary, in slow strain rate tests it is possible to observe the effect of the imposed potential and the strain rate on the hydrogen embrittlement steel behavior only after the necking of the specimens. J vs. Δa curves were measured on different pipeline steels in air and in aerated NaCl 3.5 g/L solution at free corrosion potential or under cathodic polarization at -1.05 and -2 V vs. SCE. The area under the J vs. Δa curves and the maximum crack propagation rate were taken into account. These parameters were compared with the ratio between the reduction of area in environment and in air obtained by slow strain rate test in the same environmental conditions and used to rank the different steels.

5.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29991308

RESUMO

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Assuntos
Materiais de Construção , Gerenciamento de Resíduos/métodos , Compostos de Cálcio/química , Argila/química , Química Verde/métodos , Óxidos/química , Reciclagem , Borracha/química , Dióxido de Silício/química
6.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29996741

RESUMO

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Assuntos
Materiais de Construção , Química Verde , Gerenciamento de Resíduos/métodos , Álcalis/química , Compostos de Alumínio/química , Silicatos de Alumínio/química , Compostos de Cálcio/química , Argila , Corrosão , Compostos de Enxofre/química
7.
J Appl Biomater Funct Mater ; 16(1): 3-13, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29192718

RESUMO

Titanium is well known as one of the most corrosion-resistant metals. However, it can suffer corrosion attacks in some specific aggressive conditions. To further increase its corrosion resistance, it is possible either to modify its surface, tuning either thickness, composition, morphology or structure of the oxide that spontaneously forms on the metal, or to modify its bulk composition. Part 2 of this review is dedicated to the corrosion of titanium and focuses on possible titanium treatments that can increase corrosion resistance. Both surface treatments, such as anodization or thermal or chemical oxidation, and bulk treatments, such as alloying, are considered, highlighting the advantages of each technique.


Assuntos
Ligas/química , Titânio/química , Corrosão , Propriedades de Superfície
8.
J Appl Biomater Funct Mater ; 15(4): e291-e302, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29131299

RESUMO

Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.


Assuntos
Meio Ambiente , Titânio/química , Ligas/química , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Corrosão , Humanos , Oxirredução , Óxidos/química , Estresse Mecânico , Propriedades de Superfície , Titânio/farmacocinética
9.
J Appl Biomater Funct Mater ; 15(1): e19-e24, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28127744

RESUMO

BACKGROUND: Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. METHODS: Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. RESULTS: All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. CONCLUSIONS: Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.


Assuntos
Técnicas Eletroquímicas , Ácidos Sulfúricos/química , Titânio/química , Corrosão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...